LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
M.Sc. DEGREE EXAMINATION - MATHEMATICS			
FIRST SEMESTER – NOVEMBER 2013			
MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS			
Date : 11/11/2013 Dept. No.	Max. : 100 Marks		
Answer all questions. Each question carries 20 marks.			
1. (a) Prove that $c_1t + c_2t^2 + c_3t^3$, $t \ge 0$ is a solution of $t^3x''' - 3t^2x'' + 6tx' - 6x = 0$. (5) (OR)			
(b) If Wronskian of two functions $x_1(t)$ and $x_2(t)$ on <i>I</i> is non-zero for a I, prove that $x_1(t)$ and $x_2(t)$ are linearly independent on <i>I</i> .	tleast one point on the interval (5)		
(c) Find the general solution of $x'''(t) - x'(t) = e^t$, using method of variation of parameters. (15)			
(OR)			
(d) Discuss the various solutions of the second order linear homogenous equation with constant coefficients.			
2. (a) State and prove Rodrigue's formula.	(15) (5)		
(OR) (b) With usual notation, prove the following:			
(i) $P_l'(1) = \frac{l(l+1)}{2}$			
(ii) $P_{2l}(0) = (-1)^l \frac{(2!)!}{2^{2l}(l!)^2}$	(5)		
(c) Solve by Frobenius method, $2x \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0.$	(15)		
(OR)			
(d) Show that the generating function for the Legendre polynomial is $\sum_{n=0}^{\infty} t^n P_n(x)$ if $ t < 1$ and $ x \le 1$. (1)	$\frac{1}{1-2tx+t^2} =$ 5)		
3. (a) Prove that $J_{(-n)}(x) = (-1)^n J_n(x)$, where <i>n</i> is an integer.	(5)		
(OR)			
(b) Prove that $e^{\frac{1}{2}x(t-\frac{1}{t})} = \sum_{n=-\infty}^{\infty} t^n J_n(x).$	(5)		
(c) Solve the Bessel's equation, $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0.$	(15)		

(OR)			
	(d) Prove that $J_n(x)$ and $Y_n(x) = \frac{cosn\pi J_n(x) - J_{(-n)}(x)}{sinn\pi}$ are two independent solu	tions of Bessel's equation	
	for all values of n (15)		
4	. (a) Prove that all the eigen values of Strum-Liouville problem are real.	(5)	
(OR)			
	(b) State and prove Gronwall inequality.	(5)	
	(c) State and prove Picard's theorem for initial value problem.	(15)	
(OR)			
	(d) Let $G(t, s)$ be the Green's function. Prove that $x(t)$ is a solution of $L(x(t))$ and only if $x(t) = \frac{b}{a}G(t,s)f(s) ds$.	$f(t) + f(t) = 0, \ a \le t \le b \text{ if}$ (15)	
5	. (a) Illustrate asymptotically stable solution by an example.	(5)	
(OR)			
	 (b) Prove that the null solution of equation x' = A(t)x is stable if and only if a positive constant k exists such that φ(t) ≤ k, t ≥ t₀. (5) 		
	(c) Discuss the stability of non-autonomous systems.	(15)	
(OR)			
	(d) Explain the stability of $x' = A x$ by Lyapunov's method.	(15)	